
Check P on entire system: too many states
Check a module at a time: need abstractions of other modules
Assume-guarantee approach:

1. check P on M1 with assumption A for M2
2. check that M2 satisfies A

Assumption generation is a manual process

P holds
in system

Generating Assumptions

Learning

Model Checking

Ai

real
error?counterexample – refine Ai

counterexample – refine Ai

2. 〈true〉 M2 〈Ai〉

M2 M1A

Does system made up of modules M1 and M2 satisfy property P?

1. 〈Ai〉 M1 〈P〉

P holds

P violated

Process is iterative
We use a learning algorithm to infer the
smallest assumption at each stage

Assumptions are generated by querying the
system, and are gradually refined as needed
Queries are answered by model checking
Refinement is based on counterexamples

obtained by model checking
Termination is guaranteed
Algorithm is “any-time”
Approach implemented in design-level model

checker, and partly in software model checker

Our work: the first incremental and automated approach for assume-guarantee reasoning

true

false

true

false

N Y

Explanation
POC: Dimitra Giannakopoulou and Corina Pasareanu
Background: Verification of large systems requires a divide and conquer approach;
system properties are checked in terms of properties of components. The
correctness of a component depends on the behavior of components with which it
interacts. Assume-guarantee reasoning is a divide and conquer approach to
verification that makes use of “assumptions”, i.e., abstractions of the environment of
a component. Although aimed at scalability, such reasoning has not been widely
applied, because coming up with appropriate assumptions is a difficult manual
process.
Accomplishment: We have developed a novel framework for incremental, and fully
automated assume-guarantee reasoning. The basis is the use of a learning
algorithm to generate assumptions automatically. Our framework has been
implemented in the LTSA tool for design-level model checking. It has been
successfully applied to a number of case studies, including the Mars K9 Executive
prototype.
Shown on Slide: To check a property on a component, first check that if the
component is part of an environment that satisfies some assumption, then the
component satisfies the property. What remains to be shown is that the environment
satisfies the assumption. We use a learning algorithm to generate assumptions
automatically. Assumptions are initially approximate, but become gradually more
precise by means of counterexamples obtained by model checking the component
and its environment alternately. The algorithm is “any time”; it produces intermediate
assumptions and is guaranteed to terminate with precise answers.
Future Plans: Include implementing our framework in JPF, evaluating our approach
in the context of large programs, improving the efficiency and memory usage of our
algorithms, and extending the types of properties that our framework handles.

